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ABSTRACT

Experimental measurements of the differential scattering cross sections

for excitation of helium by electron impact from its ground state to its 21S

state are given at four incident electron energies in the range 26-55.5 eV

for scattering angles between 100 and 700 and at 81.6 eV for scattering

angles between 100 and 800. These differential cross sections are nor-

malized by using previously determined 21P cross sections and measured
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21S/21p cross section ratios. These experimental cross sections and cross

section ratios are compared with results predicted by the Born approximation,

the polarized Born approximation, and several other first-order approximations

in which direct excitation is calculated in the Born approximation and ex-

change scattering in various Ochkur-like approximations. Calculations based

on these approximations are also compared to the data of other experimenters.

The effect on the small-angle scattering of several nonadiabatic dipole-

polarization potentials is examined. For the 34-81.6 eV energy range, it is

shown that the inclusion of polarization is necessary for accurate predic-

tions of the angle dependence of the 21S cross sections at small angles.

The cross sections resulting from the use of analytic self-consistent-field

wave functions for both the ground and excited states agree well with those

obtained from more accurate correlated wave functions.
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I. INTRODUCTION

In many cases, the first Born approximation has been successful'in
u

'-'

explaining the differential cross sections for electronic excitation of atoms

and molecules by electron impact at high energies (E greater thana-;bouit !''

150 eV) and small scattering angles (le'ss than about 1 5 ')-4a'5 -.This is ithe

region where a study of the assumptions behind the first Born approximation.

leads us to expect it to be most valid, although the quantitative'validity

of the theory depends on the particular nature of the' transition.'' It

is desirable to find a calculational scheme, as simple to apply'as the';''-'

first Born approximation, which represents the essentiail'featurles of thei-''

scattering process at intermediate impact energies (E 15-150;eV). o '' :

In a previous article7 we presented' a 'thedoretical and experimental- '
'

study of the electron scattering differential cross sections (DCS"s') fo'r

the (ls2 ) llS -· (ls2p) 2 1 transition in helium. In that paper we showed, '

that the'angle dependence of the DCS for e -< 40° and E = 34-82 eV was --.' '

accurately predicted in the first Born approximation. 'The success'of this:'

approximation indicates that electron exchange, distortion of the scatt`eiThg

electron wave function, and polarization of the target by the incomirig elec-

tron need not be included in calculating;the angle dependence of: the' smalii-

angle DCS for the 11 S - 21 ' transition. In the present article'we use

similar methods to study the (is
2

) ' lS (ls2s) 2 S transition.- We find,'
-

.

however, that it is necessary to include polarization of the target. The'

most important effect is the dipole polarization induced in the target,

and we use the polarized Born approximation (a first Born calculation aug--

8
mented by polarization) to explain the experimental data.:' The polarized

Born approximation includes the'effect of monopole and dipole polarization

- > .r 
.. ..~~~~~~~~~~~~~~~~~~~~I
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of the target. We again show that it is not necessary to treat exchange

and distortion accurately to explain the main features of the angular

dependence of the small-angle DCS. We discuss experimental and theoretical

results for the ratios of the cross sections for these two excitations and

both the differential and integral cross sections for excitation of the

21S state.

The previous differential cross section studies2 '9 14 of the 21 S state

are limited to small scattering angles ea 200 (except for energies near

threshold and for the data of Ref. 12 which may be in error at large 0 due

to double scattering1 5). These studies are summarized in Table I, where

they are compared with the present experimental conditions. Pre-194 0

experimental work on excitation of the n = 2 states of He is critically

discussed in Appendix II. There are several previous experimental deter-

minations of the 21S/21P differential cross section ratios.16-25 These are

summarized in Table II, where the energy and angular ranges are compared

to the present work. By using our experimental cross section ratios and

our approximate normalization of the 21P DCS's (Ref. 7) we can put our

21 S DCS's on an absolute scale. Further, we integrate our 21S DCS's to

obtain experimental estimates of the absolute 2 1S integral cross sections

for impact energies E = 26.5-81.6 eV. The only previous experimental esti-

mates of this quantity were obtained by Dugan, Richards, and Muschlitz26

for E = 25-135 eV and Vriens, Simpson, and Mielczarek for E = 100-400 eV.

Kim and Inokuti5 concluded from a study of the available low-angle data

in the 200-400 eV incident energy range that the Born approximation is valid

down to lower energies for excitation of the 21 P state than it is for exci-

tation of the 21S state. We study this question further in this paper.

Moiseiwitsch and Smith2 7 pointed out that the Born-Oppenheimer approximation,

14



TABLE I. Measurements of the differential cross sections
1 1

for the 1 S - 2 S transition in helium.

ECeV).. , e(ae-1.- A , - -0(deg)

604

511

417

500

500

50 - 400

300 - 400 .

150 - 225

100

56.5

22

81.6

26.5 - 55.5

7.6 - 8.6

3.8 - 8.8

7.4 - . 4

4.7 -15-.3

0.5 - 2.5

5

5 - lo

5 - 15

5 - 20

5 - 60o

20 -- 145

o10 - 80

10 - 70

and 21 P peaks-'were not completely resolved!!in

all the :spectra reported in these references.

b
The cross sections are given in relative units._--

15.,

Re f.. .

9a

9a

11

14

2

2

2

12

1P 

Present

Present

aThe 2
1
S



TABLE II. Measurements of the differential

cross section ratios 21S/21 P.

Ref. E(eV) e(deg)

23 25,000 0

9 511 4.o - 8.8

10 500 6.3 - 15.3

11 500 0.5 - 2.5

2 300 - 400 5 - 10

17 235 9

2 150 - 225 5 - 15

18 202 0

2 100 5 - 20

19 22 - 80.7 0

12 56.5 5 - 60

16 50 0

24 48,500 0 - 12

25 48 0 - 12

22 46 90

14 50 - 4oo 5

Present 81.6 o10 - 80

Present 26.5 - 55.5 0 - 70



which includes exchange effects, is much worse for S - S transitions than for

S - P transitions. This fault occurs because the Born-Oppenheimer approxi-

mation greatly overestimates the effect of exchange for the former case.

We bypass this difficulty by accounting for exchange using several Ochkur-

like theories.7,28-36 These theories give more reasonable predictions for

the magnitude of the exchange effect and show that for qualitative purposes

we may neglect exchange at small scattering angles.

In this paper we present and discuss new experimental and theoretical

results and give an extensive analysis and re-evaluation of the experimental

data of Rice, Trajmar, and Kuppermann.3 7 39

17-18



II. EXPERIMENTS

The electron impact spectrometer and data collection procedures used

to obtain the experimental results reported here have been described

previously in Ref. 7.

The basic experimental measurements consist of the determination of the

intensity of electrons scattered'after losing an energy corresponding to

excitation of the 21S state relative to the intensity resulting from

excitation of the 21 P state as a function of scattering angle for- a fiked-

incident energy. These intensity measurements were taken from the same

energy-loss spectra~'used to obtain much of the data presented in Ref. 7.

The 21S/2lP intensity ratios are determined by dividing the height of the

2 S energy-loss peakby that of the 21P peak at each angle and energy

(00° ' ' 70° for E = 26, 34, 44, and 55.5 eV and 100° ' ' 80° for E =

81.6 eV). Peak heights rather than areas can-be used since the peak shapes

were found to be independent of scattering angle. The instrumental factors

relating the peak intensities to-their respective differential cross sections

are the same to a good approximation for both the 21S and the 21P energy-

loss features in any one spectrum; therefore, these intensity ratios equal

the corresponding differential cross section ratios. These experimentally

determined-ratioQs are shown -in-Figs 1-3 along with the results df several

theoretical calculations which are discussed in Secs. III and IV. The

error limits assigned to the 26-55.5 eV ratios are the average deviations

of 4 to 7 determinations at each angle. Each data point at 81.6 eV repre-

sents a single determination.

The' 2S2' p (and 23S/21, 23 P/21 P and 33 S/21P) intensity ratios at

0 = 0° agreed well with those of Chamberlain, Heideman, Simpson, and

Kuyatt1
9 at E = 55.5, 44, and 34 eV but disagreed with theirs at E = 26 eV.
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3.0

o o.0 ...........o 1.0
0.3 B/PBB

0.1
0 15 30 45 60 75 90

8(deg)
Fig. 1. Ratio of differential cross section of the 11S - 21 S

transition to that of the 11 S - 21 P transition as a
function of scattering angle 0 for E = 26.5 eV. The
circles (with error bars) are the present experimental
results and the curves are calculated by the indicated
method. The dotted line was obtained with b = (5/4) bW =
1.93 a

o
and the dashed line with b = 2(5/4) blw = 3.86 a

o
.

The value of a is 1.584 a3 in both cases.
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55.5eV

0 (de)/

4 e(icsihrobsa coe44eV

34=/ eV

Fig. 2. Ratio of di tial cross section othe transi 
tion to that of the 11 S-( 22)'transition as a function of scat-
tering angle s. The present experimental results at = 55.5

eV (circles with error bars and connected by a dashed

0.4curve), and E = 3 eV (squares with error bars and connected

value from Doering (Ref. 22 at 46 eV(asterisk) are shown.

the rmonotonic solid curves are calculated at4, 4, andt E = 55.5

44 eV in(circles withe errBorn approximatis and on.nected by a dashed

eV in the Born approximation.
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e(deg)

Fig. 3. Saine as Fig. 1 except that E = 81.6 eV. The circles c'-u
the present experimental results; the asterisl' is tle :.
result of Chamberlain, Heideman, Simpson, an:Li k'yratt
(Ref'. 19) at E = 80.7 eV. The solid currve is calculan. ei
in the Born approximation (B) and the dotte'd c'urve ini.tu
polarized Born approximation (B/PB') with a. = 1.58l4. 't al
b = (5/) b = 3.39 %.
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Since a change in our E of + 0.5 eV (which is within our uncertainty in E,

see Ref. 7) completely resolves this discrepancy, we shall assume that E =

26.5 eV in this case.

The absolute 21S differential cross sections are computed from the

above intensity ratios and the renormalized absolute 21P differential cross

sections from Ref. 7as discussed below.. -The extrapolation procedure used

in Ref. 7 to facilitate normalization of the 21P differential cross sections

assumed that the cross sections decrease monotonically-with increasing angle.
...j

However, close coupling calculations of electron-hydrogen, atom ls'2p's'cat-J

tering predict differential cross sections which rise significantly at high

angles.40 Consequently, we renormalized the 21p differential cross sections

presented in Ref.
"

7 by assuming a constant cross section for angies greate'r

than those for which data were obtained. These ren6rmalized values are lower

than those of Ref. 7-by 1.6%.at E = 86.3 eV, 7.65%at E = 55.5 eV,: 8.0o at

E = 44 eV, t.8% at E = 34 eV, and 19.5% at E = 26.5 eV.

1
The experimental 2 S differential cross sections are presented in

Figs. 4-8 along with the results of several theoretical calculations which

are discussed in Secs. III and IV. 

The error bars assigned to the 21S differential. cross. section data

include the errors in the ratios and uncertainties in the shape but not

the magnitude of the 21 P differential cross sections. Therefore, these

error bars include the uncertainty in the angular dependence o'f the 21 S

differential cross sections but only part of the uncertainty in their mag-

nitude. The percentage uncertainty in the overall scale at each energy

is approximately equal to the "estimated percent error" in the integral of

the 21 P differential cross sections given in Table II of Ref. 7.
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BTVPS
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0 15 30 45 60 75 9C
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Fig. 4. Differential cross section versus scattering angle for E =

26.5 eV. The circles (with error bars) are the present
experimental results. The curve labeled BORB.I(SCF) is
calculated in he symmetrized Born-Ochkur-RPudge approxima-
tion with the SCF wave functions. The other curves are
calculated in the indicated approximations using the accu-
rate generalized oscillator strengths (Refs. 5 and 86).

)
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o /PB (SCF)
i0-I ' -BVS ..

- '0 ' 
0 14090·

· .BORP

BOR4 eV. The circles (with error barsB.) -

10-generalized oscillator strengths ( . 5 and 86). The upper

dotted curve is calculated in the dipoleNolarized Born approxi-
mation with a = 1.584 a3 and b = (5/4) bl = 2.19 a.. The
lower dotted curve is the same but renormalized to experiment
at 6 = 10°. No other calculation is renormalized.
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Same as Fig.
2.49 a

o
.

5 except E = 44 eV and b =Fig. 6.
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Same as Fig. 5 except E = 55.5 eV and b -
2.79 ao . The curve labeled SMM is an ex-
perimental result from Ref. 12 (56.5 eV)
and is normalized to the lower dotted
curve at 30 ° .

.. . .. . ... ~~1;
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Fig. 8. Same as Fig. 5 except E = 81.6 eV, b = 3.39 a
o
, the data are

shown as circles without error bars, and no renormalized cal-
culations are presented.
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The 21S integral cross section Q(E) is related to the differential cross

section I(E,e) by

Q(E) = 2 S I(E,e) sin 0 de ()
o0

In order to perform.-this integral, the 2 S differential cross sections are

extrapolated to 0° and to 1800. The extrapolation to 0° introduces little

uncerifEyif &inf r seeef. 7' v _bnut Etho'&extr'pfioa'rIoTto1800 is

subect to large uncertainties '-S'inceeii'eth''2" S"'DCS"'s are genera'lly rising at

the- hig-hest---ang-l-es---for---which- data-are----obta-i-ned-.-..The...contribution .to..Eq.. .()..

of the'"extrapola-tion to 180° is assumed to be '

Qext(E)= 2N I(E,.O ax) sin 8 de , (2)

max

where ax is the largest angle for which data are obtained. Table III

gives the contributions to (1) from angles less and greater than 8max and

the .resiulting2 S S'integralcros 's e'ctiin's. Thd 'e"'''etimat'a"ed"''e''""er"ro'r' ... ."-

given in this table includes contributions from both regions of the integral

and includes the uncertainty in both the shape and scale of the 2 S dif-

ferential cross sections.
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TABLE III. Integration of the 2 S differential cross sections

to obtain integral cross sections Q(10
-

2 a 2).
0),

Estimatede (deg) Contributions to Q percent
(dmax ee ercerornt

E(eV) max ax > max error

26.5 70 2.2 0.7 2.9 50

34 70 2.8 0.4 3.2 35

44 70 2.5 1.5 4.0 48

55-5 70 2.6 3.0 5.6 52

81.6 80 2.5 0.9 3.4 58



III. THEDRY

A. 'Scattering Equations

4V27
The theory of electron scattering by the helium atom is.well developed. 27

Consider the close-coupling equations for this problem. As written by Burke,

Cooper, and Ormonde,
4
1 the coupled integro-differential equations (in hartree

atomic units) for the radial functions F LS are
ma

+r m.dr r2 2 i

where L'and S-are'the total orbital and spin angular momentu'm q'uantuim numbers,

respectively;'r' is the separation between the scattering le-tea'r'n7-adHe -th'

atomic' nucleus, m denotes the state of the atom, 2 is- the orbit-al '.s:gi-lar

momentum of the electron, a denotes the initial state' of 'the abom,', an-:'tthe

sum is over all atomic eigenstates in the (necessarily truncated) expansion

of the wave function. The wave number k and the matrix elements V and
m mn

K 'are defined in Ref. 41. We make the approximation that:-thd'e:eigenf'unhtionmn

expansion is truncated to include M states of S' symmetry and N-N statesf':of'P

symmetry. We denote unspecified S states by i and j, and unspecified P

states by P. Further we use 1, 2, and a to denote the 11S, 21S, and 21P

states, respectively. If we specifically 'consider scattering from :ground

state helium, Eq. (3) becomes ' ' 

d2 t2(t2 + 1) 4 2 LS

:. "r . .

:= [2V (r) + Km(r)] FL(r)ml Mi
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N
+ E [2Vm(r) + K,(r)] FL(r) , (4)

where we denote the nonlocal exchange potential by

K (r)F (r) K(rr')Fni(r')dr' (
0

We do not want to solve these equations exactly but rather to find simple

approximations. We next consider the terms in Eq. (4) for some special

cases to show which terms can be neglected and which terms should be approxi-

mated.

1. Elastic Scattering in the 1lS State

For elastic scattering in the ground state, the Born-Oppenheimer
4 '272

approximation corresponds to truncating the sums at M = 1 and N = 0 (no P

states) and approximating the radial function in Eq. (4) as a radial

function for a free particle with wave number kl

Ftl =j 2l(kr) . (6)

Then the scattering amplitude is the matrix element between free particle

states of the nonlocal potential

2V
1 1
(r) + Kll(r) * (7)

4
The Born (B) approximation consists in further neglecting Kll(r).

In these approximations we neglect completely the effect of virtual

and real excitations of the P states, i.e., the dipole-polarization of

4,43-44the target. It is well known that this is a serious error.

(Virtual excitation of excited S- and D-states, i.e., monopole and quad-

rupole polarization, are less important processes.) The polarization
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4b,8,43-46 he
effect- is, especially important for.-small angle scattering. The

polarization .eff~ect can be, included by using the optical potential..

2V 1 (r) + Kll(r) + 2Ull(r) (8)

instead of the potential (7) in the matrix element. Ull(r) is chosen to

simulate the polarization effect, This is the polarized Born-Oppenheimer

approximation, and neglecting K 1(r) yields the polarized Born (B/P)

approximation. It can be shown that the long range behavior of Ull(r)

can be obtained in the adiabatic approximation,4 7 - 4 9 in which it is assumed

that fluctuations in the incident particle's kinetic energy are small com-

pared to fluctuations in the energy E(n) of the target (virtual excita-

ti6n§). 4 7 51 In this way. it can be shown that,
-

-a 11

l'' .i: , ''

of-V·.:: , a . i. -

V1 1-U-~ c1 1 exp(~c{1r), r co (9)

Z.: : -Si :+ Z, , 1-0

In Eq.-;(1i:),'zl and z2 ;are- the z-cbmponents o'f:the position ve'cto~rS6;of the

two bo'und electrons. The -large-r behavior of U11-cant ie compared wwith that

of L .

Vii Cl exp(-clr), 'r-' (13)

with cl > 0.. It is because Ull is a long range.potential compared with.Vl1

that polarization Ais so, important for elastic scattering in the, ground state.
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At very high energy the nonadiabatic effects become very large (so that

(9) holds only at such large distances so as to be unimportant), and the

polarization potential is vanishingly small.

2. 11 S - 21 P Excitation

For excitation of the 21 P state from the ground state, the Born-

Oppenheimer approximation to the transition amplitude is the matrix element

between free particle wave functions of

2V (r) + Kla(r) (14)

Since

V

ip r J. (15)ViB(r) N , r - , all f , (15)
r

is a long range potential, the effects of polarization and exchange on the

small angle scattering for this excitation are much smaller than for elastic

scattering. Indeed, the Born approximation, which neglects these effects,

predicts the angle dependence of the differential cross section for exci-

tation of the 21 P state quite well for small scattering angles.7

3. 11S - 21S Excitation

a. Born-Oppenheimer Approximation

For excitation of the 21S state from the ground state, the Born-

Oppenheimer approximation can be obtained by truncating the sums in (4) at

M = 2 and N = 0 (no P states), making the further approximations (6) and

FLS(r) = j (k2 r) , (16)

and approximating the transition amplitude as the matrix element between

the free-particle wave functions (6) and (16) of the non-local transition
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potential

2V1 2 (r) + K12(r) (17)

For this optically forbidden transition5
2

V12(r) ~ c1 2 exp(-c{2 r), r -m (18)

with c12 > O. This potential is shorter-range than the transition potential

(15) corresponding to the optically allowed transtion to the 2.T sta e..

b. Born Approximation

The Born approximation is the same as the Born-Oppenheimer approxi-

mation except K1 2 (r) is neglected in (17). - -

c. Polarized Born Approximation

Because of the different ranges of the transition potentials V and
12

ViB(i = 1,2), the second order process 11 S 1P - 21 S can provide impor-

tant competition with the first order process 11S - 21S as the dominant

mechanism for this process. Thus, the most serious error in the Born'

approximation for the 11S 2 S excitation is the neglect of virtual

excitation of P states (polarization).5 3 This effect can be included by

using the full close-coupling equations4 1 (4) or by second order perturba-

tion theory. We will include it by a method not previously applied to

electronically inelastic scattering - the polarized Born approximation.8

We replace the potential V1 2 (r) by

V1 2 (r) + U1 2
(r) , (19)

where U1 2 (r) is a generalized optical potential5 designed to incorporate

the polarization effect. For small r we must take account of
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nonadiabatic effects, but the asymptotic form of U12(r) can be obtained

using the adibatic approximation.55-56 Making the adiabatic approximation

in the initial state (electron in the field of He 1 S) results in

-m12
1. ~ al2 r X (20)U12"~ -- 27 ' r - c ,(20)2r

where the static transition polarizability

a1 2 a (1) =2 Z Z 1 (21)

Making the adiabatic approximation in the final state (electron in the

field of He 21S) again yields (20) but with

12 =12 (2) 2 E . (22)
P aE

2

The asymptotic form (20) is not valid at all r and we will use the two-

parameter forms

uA ,2 12 (23)
2(2 + b2 )2

B | -a 1 2 /2r r > b (24a)

12 -a 12
/2b4 r ' b (24b)

B = |
1
2 /2r r > b (25a)

12 1r/2b5 r b (25b)

C }. 1 2 /2r
4

r >b (26 a)

12 0 r < b (26b)
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as approximate representations of the polarization transition potential for

all r. The forms are chosen so that by making b large we can reduce the

polarization potential for r < b from its asymptotic form. This reduction

simulates the main nonadiabatic effect. In this regard the form B', which

has not been-used previously, is apparently the most realistic 5 7 of the

four.

8
mThe scattering amplitude in the polarized Born approximation is

fB/P = fB + fP (27)

where

~P i ~'~_3

fP S d 3 e U12(r3) (28)
fB3(28)

= 2 ~ dr 3e 3; drldr22(rlr2) l(rl'2 1 (29)
2TT f cb3e d r 2 L] (29) r

= _ (4/q2 )M

M = f 2(rlr2)e i qr 1 l( l, 2)d l 2 (30)

q k= - k . (31)

*1 and *2 are the initial and final state wave functions, respectively, rl

and r2 are the position vectors of the two bound electrons, r3 is the posi-

tion vector of the scattering electron with initial wave number kl and

final wave number k2 , and q is the momentum-transfer. U2 and fB depend on

the phases of the bound state functions in the same way; thus, the cross

sections (proportional to the squared modulus of fB/P) will be independent

of the phases of the bound-state wave functions. We have consistently

chosen the spatial part of the 1 S bound state wave function $1 positive.

1
The spatial part of the 2 S bound state wave function *2 is chosen negative
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at the nucleus and positive at large r
1
and r2. With this choice of signs

and the wave functions in Section III.B, M is calculated to be negative

and fB is positive for all q, and a1 2
is positive when evaluated theore-

tically (see Eqs. (21)-(22) and see below). Since the polarization transi-

tion potential U12 is spherically symmetric, (28) can be reduced to

fP= -(2/q) f sin qr U12(r)r dr (32)
0o

and the integral can be performed analytically for the potentials of Eqs.

(23)-(26). We obtain

(A) = (a
1 2
n7/4b) exp (-B) (33)

fP(B) = (a 2 /b)[(B 2 + )(Si B) )+ ( - B -2 )cos B

fP(B) (a 2 /b)[(C + 2B 2 )(Sin B

+ ( - B 2 + 2B-4 )(cos B) 2B

- B + - B Si (B)] (35)

B = qb

B sin t

Si(B) = t dt (37)
0



Although the potentials (23)-(26) all have the same long range form,

the limiting forms of f at small scattering angles differ. These results

are given in Appendix I.

Notice that f(A) is positive for all q but the amplitudes associated

with the B, B', and C forms of the potential may be positive or negative,

depending on q. However, since all the forms lead to fi being positive at

small q (see Appendix I), the polarization amplitude will interfere con-

structively with fB there and will increase the small angle scattering.

Since the form of fP for large q depends on the uncertain details of U12(r),

i.e., on its small r form, we cannot trust the predictions of this simple

polarization model at large scattering angles. By using more than one

form for U
1 2

at smaller r we get an estimate in each case of how large a

scattering angle can be treated without a better model for the polarization

potential at small r.

Previous treatments of the polarization effect indicate that al2 should

be independent of energy and equal to the static transition polarizability

.(21) or (22), but that the cutoff parameter b in Eqs. (23)-(26) should be

energy-dependent. Mittleman5 7 discussed the polarization effect for in-

elastic scattering and concluded that nonadiabatic effects may be larger

in this case than for elastic scattering, i.e., b may be very large.53

Polarization corrections must become small at very high energies. Never-

theless, in treating electronically elastic scattering it has been found

that use of the static polarizability and a cutoff of the magnitude of the

target dimensions provides a reasonable approximation even at energies as

8,43-44,46 58
high as 700 eV. Holt and Moiseiwitsch's second-Born calcula-

tions show that polarization corrections become small at a lower energy for

inelastic scattering than for elastic scattering.
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As shown above, we obtain different adiabatic polarization potentials

if we consider polarizing interactions in the initial and final states.

Since we do not have a good method for quantitatively estimating nonadia-

batic effects, we wish to use the case which has smaller nonadiabatic

corrections. Fetter and Watson5 show that a reasonable criterion for

validity of the adiabatic approximation in state j at a distance r much

greater than the atomic radius is

bF W =- k/< AE
.
> << r . (38)

In (38), < AE. > is the effective average value of AE. over all states F

causing polarization. The usual approximation is < AE. > -- U. where U is

the ionization potential in state j. In our case, U1 = 0.90372 a.u. and U
2

0.14597 a.u. However, we find (see below) that excitations from the 2 1S

state are dominated by those to the 2Pi state. Thus, we take < KA > = U1,

but < AE2 > - AE2 = 0.02213 a.u. We can now use b. as an approximate esti-
2 2 a

mate of b (we expect that b is at least approximately proportional to b
FW

with an energy-independent constant of proportionality). The results are

shown in Table IV. The table shows that the adiabatic approximation to

polarizing interactions in the final state is a good approximation only

for distances too large to be interesting, i.e., nonadiabatic corrections

are large in this case. However, it also shows that we can use the adia-

batic approximation to polarizing interactions in the initial state to ob-

tain a useful estimate of the polarization effect. For lack of a better

theory at this time, we will consider bF W to be the theoretically most
1

justified choice for b in Eqs. (23)-(26). At zero momentum transfer (q =

0), the scattering amplitudes fP associated with the polarization forms A,

B, B', and C (see Eqs. (23)-(26) and Appendix I) are ra/4b, 4a/3b, 5a/4b,
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TABLE IV.
FW

Values of the cutoff parameter bF
W computed

using the Fetter-Watson formula (Eq. 38).

E k 
1

k 
2

bF W FWE k k2 1 b
1 2 1 2

(eV) (a ) ( (a (a)) (a

26.50 1.40 0.66 1.54 29.72

44.00 1.80 1.31 1.99 59.24

81.63 2.45 2.12 2.71 95.69

150.00 3.32 3.08 3.67 139-35

300.00 .4.70 4.53 5.20 204.77

500.00 6.06 5.94 6.71 268.23

25000.00 42.87 42.85 47.43 1936.24
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and a/b, respectively. In order to make these amplitudes equal at q = 0,

we usually use b = (const.) x bFW where the constant is T/4, 4/3, 5/4, and

1 for forms A, B, B', and C, respectively. We will also consider an empiri-

cal determination of b in Section IV.A.1.

There are at least two reasons why we'might expect nonadiabatic effects

to be larger for electronically inelastic scattering than for electronically

elastic scattering. (1) A change of electronic state is a nonadiabatic

phenomenon. (2) Elastic scattering is dominated by large A 2 (large impact

parameters in semiclassical language). At any given energy, the relative

velocity along the line connecting target and projectile is smaller for

larger impact parameters than it is for smaller ones. Consequently, elec-

tronic adiabaticity (which roughly depends on the relative velocity being

smaller than the average kinetic energy of the bound electrons) is more

likely when t2 is large. Inelastic scattering cross sections are smaller

than elastic scattering cross sections so that they depend more on low-

partial-wave scattering; thus, the adiabatic approximation should not be

as accurate for inelastic scattering as for elastic scattering.

d. Polarized Born-Oppenheimer Approximation

The polarized Born-Oppenheimer approximation consists of replacing

the potential (17) by

V1 2(r) + U1 2 (r) + K1 2 (r) (39)

where V1 2 is the direct transition potential, U12 is the (direct) polari-

zation transition potential, and K1 2 (r) is the exchange transition poten-

tial. Upon summing over partial waves, V1 2 (r) and U1 2(r) lead to the direct

scattering amplitude fB/P and K12(r) leads to the Oppenheimer4 2 exchange

scattering amplitude gBO



BO 1 ikfr3-ik21 'r1 1 2 g = 2r J' e 92(r3,r 2) 1( rlr2) + r23 
2TT 2 3 2 1 2 r 13 23 3

dr dr dr3 (40)

In the polarized Ochkur-like approximations considered below we use the

potential (39) but modify the terms containing K1 2 (r) in ways designed to

remove some of the failings of the Oppenheimer exchange amplitude.

e. Ochkur-Like Theories and Polarized Ochkur-Like Theories

42
The Born-Oppenheimer (BO) approximation was the first and is perhaps

the most well-known method of including electron exchange, but the exchange

amplitude in this approximation suffers from a number of serious deficiencies,

including the lack of orthoganality between the initial and final total-

system wave functions. In practice, the calculated cross section is much

too large near threshold, leading to a serious violation of flux conserva-

tion.5 9 The role of the electron-nucleus interaction term in a first-order

60theory has recently been discussed by a number of workers. Although the

angular dependence of the BO differential cross section is in fair qualita-

tive agreement with the accurate theories, the magnitude is invariably too

large except at the highest electron energies.3 5 Only those first-order
'

approximations to the exchange amplitude which represent improvements over

the BO approximation will be employed here.

28,61
Ochkur observed ' that in the case of the excitation of helium, the

prior-interaction form of the BO exchange scattering amplitude (Eq. (40)),

can be expanded in inverse powers of the incident electron energy. Retain-

ing at all energies only the first term in this expansion results in what

we call the prior-interaction form of the Ochkur (0) approximation. The

exchange amplitude in this approximation is related to the Born approximation

by
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g (q2 /k2) fB (41)

Any expression like this one which relates the exchange amplitude to the

direct amplitude by a factor independent of the electronic structure of the

target will be called an Ochkur-like approximation. Although Ochkur's

formula cannot be obtained from a variational expression, Rudge has ob-

tained2 9 an approximation (denoted OR) based on a variational principle in

the prior-interaction form. It is designed so that it reduces to the Ochkur

form at high energies, but it sometimes gives improved cross sections at

lower energies. The exchange amplitude in the OR approximation is

2ir
O 2 e12fB

OR e (42)

(k 2 + 2U1 )

where

12 = tan-1 (43)
k2

and U
1

is the ionization energy. However, the OR approximation to g com-

bined with fB or fB/P does not satisfy detailed balancing because of the

nonsymmetric phase factor in the amplitude. Bely removed this discrep-

ancy by forming an exchange amplitude which is the absolute value of the

(OR) form. We call this the symmetrized Ochkur-Rudge approximation (de-

noted ORB.I),

ORB.I IgOR 
g = g I (44)

The Ochkur and Ochkur-Rudge approximations also exist in post-interaction

forms,7 and we shall present some results based on these forms.



Vainshtein, Presnyakov, and Sobelman6 3 (VPS) have suggested a different

approach for the calculation of the excitation cross sections in which the

emphasis is on a more complete account of the electron-electron interaction.

The validity of the final expressions for the scattering amplitudes has

been questioned2 7 a because of the various mathematical approximations made

in their derivation. Nonetheless, the method has been found to lead to

approximately correct cross sections for the excitation of the H-atom, 6 3a

and on that basis it is worth considering. The ratio between direct and

exchange amplitudes in the VPS method may be used to construct an Ochkur-

like relation which is called here the transferred Vainshtein-Presnyakov-

Sobelman (TVPS) approximation. The TVPS exchange amplitude takes the form

2
TVPS CTVPS 2fB (45)
g = CTVPS 2

where

C _ F(-iv, iv 1; 1/4) (46)
CTVPS F(-iv, iv, 1; X)

and

2X E + q v = 1 (47)
2AE + 3q2 1

F(X, Y, Z; W) is the hypergeometric function, and AE is the excitation

energy.' We present the integral cross sections obtained by using the VPS

method6 3 for both direct and exchange scattering.

The final model to be considered here is' one constructed from the

ratio of the direct and exchange amplitudes as calculated by Kang and

Foland.33' 0b '
6
5 In their treatment, care is taken to treat all the



electrons equivalently and to use the same approximations for both the

direct and exchange amplitudes. Although their results do not suffer from

many of the inconsistencies of other first-order theories, they had to make

a number of mathematical approximations similar to those made in the VPS

derivation in order to reduce their formal solutions to amplitudes which

could be evaluated. By using their ratio of exchange to direct amplitudes,

the transferred Kang-Foland (TKF) exchange amplitude is constructed as

TKF _ fB (48)
g 2 KF

where

F k i
2 i(klk2 -

KF C (( /- 2'.) (49)
KF e: klk2

F(i/kl,ik2,1;X)

where

C = q2/2, k = klk2 cos - k2, y = (k - k2)/2, (50)

2
and X = 2klk2(cos - l)/(kl - k2)

The quantity F(X,Y,Z) is the confluent hypergeometric function, and a is

the scattering angle.

The various models for the exchange amplitude g described above are

combined with the Born amplitude for direct excitation fB to give the total

scattering amplitude. In terms of these amplitudes, the differential cross

section is

k2 2

I(kl',) = k I fB - gl (51)



In the polarized Born-Ochkur-Rudge (BOR/P) approximation, the direct ampli-

tude fB is replaced by the polarized Born approximation direct amplitude

fB/P, and the prior-interaction Ochkur-Rudge model is used for g.

It should be noted that of the approximations discussed above, only

TKF OR
those with total scattering amplitudes which contain g or g are com-

plex. The other models involve phases between the direct and exchange

amplitudes such that the total amplitude can be taken as either real or

imaginary depending on the particular transition.

B. Wave Functions

1. 1 S Wave Function

Many approximate wave functions for the 1 S ground state of helium

have been reported in the literature. Calculations based on two of these

wave functions will be presented here. One of these is the 53-term corre-

66
lated wave function of Weiss. The other is the self-consistent-field

(SCF) function of Clementi
6
7

1t: ~o(ir) ~o(r 2) 2) (2(52)

where ~ is a singlet spinor,

2

5o( k) : l CoiXoi(rk ) (53)
i=l

and Xoi(r) is a normalized hydrogenic ls orbital with orbital exponent Z

The coefficients coi and orbital exponents are given in Table V. The Weiss

and Clementi wave functions are compared with each other and with some

others in Table VI. For first-order scattering theories, the spatial extent

ot the electron charge distribution is of primary importance in determining

the accuracy of the calculated cross sections. 68-69 Therefore, as an
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TABLE V. Parameters for self-consistent-field (SCF) wave functions.

C
State n ni Z ni

1 1Sa 0 1 0.835188 1.446

0 2 0.189650 2.870

21S
b

1 1 0.998451 1.992

1 2 0.001185 4.812

2 1 -0.00061 0.528

2 2
d

0.001299 1.210

1 3 -0.117763 1.992

1 4 -0.006733 4.812

2 3 1.176333 0.528

2 4d -0.315588 1.210

a Ref. 67.

Ref. 85.

C The orbital exponents are optimized in both the

tions.

The u orbital cusp is -2.0043461 a.u. and the v

-2.1079229 a.u. The cusp property is discussed

and P. S. Kelly, Phys. Rev. 131, 1177 (1963).

1 S and 2 S calcula-

orbital cusp is

by C. C. Roothaan
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additional check on the accuracy of the calculations to be presented in

2 2
Section III.C, the expectation value < rl + r2 > is also included in Table

VI. Comparison with the exact results of Pekeris7 Oa shows that the Clementi

wave function is quite accurate, at least for this expectation value.

2. 2 S Wave Function

The 2 S state of helium presents a more difficult problem since it is

not the lowest state of its symmetry ( s). The standard variational prin-

ciple 7l guarantees only that the energy calculated for a wave function

approximating this state is an upper bound if this wave function is ortho-

gonal to the exact ground state (1 S) wave function. This is an obstacle

because the exact 11S function is not known. This difficulty can be over-

come by writing a linear variational function

N
= l Ci.

i
(54)

i=l

where all the 5i have iS symmetry and setting up the secular equations for

the coefficients. The system of equations has N orthogonal solutions (a

solution is specified by a set of c.). Hylleraas and Undheim7 2 and

MacDonald7 3 have shown that the solution which yields the second lowest

energy is an upper bound to the second lowest state of iS symmetry. This

procedure has been used by several authors to approximate the helium wave

functions, and some examples are given in Table VI. Kim and Inokuti5 have

calculated generalized oscillator strengths using the accurate Weiss wave

function of this form, and we have used their results to calculate scatter-

ing cross sections (see the next section).

It has been shown by various researchers that, when approximate wave

functions are used to calculate physical quantities (such as the matrix



elements (30) used in this paper) which do not explicitly depend on elec-

tron correlation, a self-consistent-field wave function may be as good as

or better than a correlated wave function of the same number of parameters.7

Since many-parameter correlated wave functions are difficult to work with

and interpret and since the good wave functions available for molecules and

heavy atoms are often SCF wave functions, we want to study the effect of

using these wave functions on scattering calculations. We consider the

orbital approximation

2 [u(rl.) v(r2) + v(rl) u(r2)] 2 (l2) * (55)

1 78
'This form for the 2 S wave function was first considered by Fock, who

derived equations for the nonorthogonal SCF orbitals u and v. Fock's equa-

tions were solved numerically by Trefftz, SchltUter, Dettmar, and JUrgens.7 9

However, these equations are complicated by the nonorthogonality of u and

v,7 5 -76 and the first analytic wave function of the form (55) was not SCF.7 5

In an attempt to approximately insure an upper bound on the energy of the

2 S state, some workers7 5
-
7 7 have orthogonalized their approximate wave

functions to approximate wave functions for the 1 S state. One way to do

80-82
this is to use the "fixed core" modification to obtain a non-SCF wave

function of form (55). This method is also called the improved-virtual

orbital method.
8
3

The form (52) is equivalent for helium to the form of the wave func-

tion in a more general, new SCF method - the GF method. The SCF wave

function of form (55) so obtained can be shown to yield an upper bound

to the true 2 1 S energy. Cartwright and Goddard8 5 have calculated an analy-

tic GF wave function for the 2 S state. In this wave function
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2 2

k E c 'niXni(r k) (56)
n=l i=l

2 4

(k) = iz3 niXni( k ) (57)

The Xni are normalized Slater atomic orbitals of principal quantum number

n and orbital exponent Zn . The coefficients and screening constants are

given in Table V.

To insure reasonable values for calculated transition moments (see

next section) we found it necessary to consider a 2 S wave function which

was orthogonal to our approximate 1 S wave function. The new 2 1S wave

function (2 1S) still yields an upper bound on the true 2 S energy. The

new wave function is

1
T(21s) = - [T2(21S) - S Tl(llS)] (58)

where '2 (2 1S) is given by equations (55), (56), and (57) and

S = < T(21S)11((llS) > = -0.01498479 . (59)

The properties of this orthogonalized wave function (58) are compared with

some other calculations in Table VI. The table shows that the GF wave

function gives charge distributions in good agreement with the exact cal-

culations of Pekeris70
b for the excited state. The table also shows that

the properties of the GF wave function are not much changed by orthogonali-

zation to the approximate 1 S wave function.
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C. Generalized Oscillator Strengths

The differential..cross section. (Eq. (51)) can be writt en in the first

Born approximation or one of the Ochkur-like approximations in terms of

the generalized oscillator strength W(q). For example, in the Born approxi-

mation

I(kl,e)= (k2 /kl)(2/q
2
AE)~(q) (60)

where

· ' · 8A 22

(see'Eq. (30)). The effect on the calculated,cross sections of the use of

approximate.wave functions has been discussed by' numerous authors.

Accurafte generalized oscillator strengths for the 11 S. 2 S transition

have been calculated by Kim and Inokuti5 using the Weiss66 correlated ave

functions and also by Bell, Kennedy, and Kingston86 using the same wave

functions. :The results of these two calculations- generally agree to three

significant figures. The generalized oscillator strengths obtained using

the orthogonal SCF wave functions discussed above with both the theoreti-

cal and experimental values of AE used in Eq. 61 are compared in Table VII

with the values tabulated by Bell et al. Also included in the table are

1
the results obtained for the nonorthogonalized 2 S wave function and the

87
recent results of Schneider, who calculated this quantity utilizing

linear response theory. Figure 9 is a plot of the data given in Table VII

to illustrate more' clearly the .differences inthe .generalized oscillator

strengths. One notes that the result obtained with the nonorthogonal 2 S

SCF wave function is extremely poor f6r q '1.5.' 'The result from the ortho-

gonal SCF wave function is smaller than the accurate result of Bell et al.86
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for all'values of q • 2.4,a.u., and the same conclusions reached in the

study of the 2 P excitation7 concerning the reliability of SCF wave func-

tions also apply here. On the other hand, the results obtained by

87Schneider are larger than the accurate values for all values of q. Since

a separate wave function was not calculated by Schneider in applying linear

response theory, the differences between his results and the accurate values

cannot be analyzed in the same manner.

All our calculations of 2 S DCS's and 21/2P DCS ratios using the

methods which include polarization were carried out using SCF wave functions,

i.e., Y1 (Eq. 52) for the 1 S state, 'Y(21S) (Eq. 58) for the 21S state, and

the 2lP wave function of Eq. 33 of Ref. 7 with the experimental value of

AE. When it is not stated otherwise, calculations of DCS's and ratios which

do not include polarization are performed using the accurate 11S - 21S

generalized oscillator strengths.5 '
8 6

D. Theory of the Transition Polarizability

The transition polarizabilities are defined by Eqs. (2i) and (22).

Although the perturbation theory of off-diagonal matrix elements is less

well developed than the perturbation theory of diagonal matrix elements,

any of the standard techniques of perturbation theory can be applied to

evaluate these quantities. That is, we could use direct summation, the Z

88-89
expansion, or Buckingham's variational-perturbational method for ob-

taining first-order perturbed functions.9 0 9 3 The direct summation techni-

que has the advantage of showing which P states make important contributions

and giving quantitative estimates of the errors involved in neglecting cer-

tain groups of P states in the eigenfunction expansion of the wave function

(see Eqs. (3)-(4)). The variation-perturbation methods have the advantage

that they can be used to compute very accurate values of the transition
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polarizabilities. The variation-perturbation method for a(
l )

proceeds by

writing

M1) = -(2/F2 ) < T2 IH1 j1> (62)

H
1
= -F(z

1
+ z2) (63)

where TP is the perturbed helium ground state wave function for the pertur-1

bation H
i
. Y2 is the helium 2 S wave function, and F is the electric field

produced by the scattering electron. The variation-perturbation method for

a( 2 ) proceeds by writing

2) -(2/F2 ) < lIHllIP > (64)

where PY is the first-order perturbed helium 2 1S wave function for the same

perturbation. If the perturbed wave functions are calculated in terms of

the usual eigenfunction expansion, we obtain (21) and (22).

The Zj 's in Eqs. (10), (21), and (22) can be evaluated from various

wave functions. The best available results are given in Table VIII. The

matrix elements in the table and the corresponding energy differences be-

tween the states show that perturbation of the ground state involves sev-

eral excited P states in an important way. However, perturbation of the

21S state mixes in essentially only the 21P state.

Accurate values of the transition polarizabilities have been computed

by Drake9 by the variation-perturbation method using 50-term correlated

wave functions. The construction of the basis sets used for this calcula-

tion was described by Drake and Dalgarno.9 5 Drake finds a(2) = 101.6 a3

and a(1) = 1.584 a3 . From the discussion in Section III.A.3.c, it isand (1) = 1.584 a . Phom the discussion in Section III.A.3.c, it is
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TABLE VIII. Matrix e'lemenis'Z. and. energy differences .

- 'A valueare -in'hartree iatomic tsni's ; (--

- iZ :E ; Z2 @ AE2

a a 0 
2 o.4206a 0.77988a 2.916C 0.:0:2 ]-3- ' :

'J-. '

3 0.2080a 0.84859a -0.9 02 0.090840C

4 0.131b 0 .8 7 2 8 7a -0.4 7 0c 0.115019C

a Ref. 5, Table V.

b Y. -K. Kim and M. Inokuti, Phys. Rev. 184, 38 (1969),

calculated from Table I.

c y. -K. Kim and M. Inokuti, Phys. Rev. 181, 205 (1969),

calculated from Table I.
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apparent that the latter value is the appropriate one to use in the

present model.

It is interesting to consider calculations which include both the

initial state polarization and the final state polarization interaction

with the very large values of the cutoff parameter suggested by the Fetter-

Watson criterion (see Table IV). Although a(2) is much larger than (1)

b2W is so large that the correction is very small. In fact, adding this

interaction does not even change the first few significant figures of the

calculated DCS.
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IV. COMPARISON OF THEORETICAL AND EXPERI-

MENTAL DIFFERENTIAL CROSS SECTIONS

A. Ratios

In this section we consider the ratio of the DCS for excitation of the

21S state to that for excitation of the 2 P state.

1. Energy Dependence

The intermediate and low energy ratio data exhibit two trends which

are qualitatively predicted by the calculations. First, the low angle (8 <

15° ) ratios increase with decreasing impact energy (see particularly Figs.

2, 10, 11, and 12), and second, the large angle (8 > 609) ratios increase

with increasing impact energy (see particularly Figs. 2 and 13). Figures

10-13 show that the theory and experiment are in better agreement for the

ratios at small 0 than at large 9. They also show that the theory predicts

the energy dependence of the ratios better than it predicts the ratios them-

selves. The Born approximation (either with or without correcting for ex-

change in one of the Ochkur-like theories) is about a factor of 3 too low

for the 21S/21 P ratios at 0° . This ratio is underestimated because of the

neglect of polarization. Polarization is much more important for the exci-

tation of .the 2 S state than the 2 P state as explained in Section III.A.

Including polarization in the calculation of the DCS for the 2 S state using

the theoretically most justified polarization model (m -- a() = 1.584 3

b = (5/4)b , and form B' for the polarization cutoff function, see Section

III) gives DCS ratios at 0° in much better agreement with experiment (see

Fig. 10). This result indicates that including polarization in the descrip-

tion of the 2 S excitation is necessary to describe the 2 S and 2'P excita-

tion processes to the same degree of accuracy.
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Fig. 10. 21 S/21 P intensity ratio at a scattering angle of 00 as a function
of impact energy. The dashed line is the (interpolated) experi-
mental results of Chamberlain et al. (Ref. 19), the circles (with
error bars) are the present experimental results, the asterisk is
the result of Lassettre et al. (Ref. 18). The curves are calcu-
lated ifwthe indicated approximation. a = 1.584 a,5 and b =
(5/4) b1 at each energy. (Note the change in the impact energy
scale at energies above 100 eV.)
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Fig. 1l. 2 1 S/21P intensity ratios versus energy at e = 5°. The cir-
, les are intepolated from the- present' experimental results,
thesquare i's an experimental value from Ref. '25;''and the
triangles are experimental: va-lues 'from Ref:.: 14.' 'The curves
are calciiated ini the "-Born '(Bh) and'- polarizeda Born '(B/PB')
.approximations. The dotted curve is calcu'lateed-with a =
1.584. ao3. and b = (5/4) b:W at each energy; the dashed curve
is. calculated with '- i. 584 ao3 and' with b "equal- t'o tjae

. ' y.alue determined'empiricaily (-see text). : '
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Fig. 12. 21 S/21p intensity ratio at a scattering angle of 10° as a
function of impact energy. The triangles are the experi-
mental data of Vriens et al. (Ref. 2), the asterisk is the
result of Lassettre et al. (Ref. 25), and the square is
interpolated from the results of Silverman and Lassettre
(Ref. 10). The curves are calculated in the approximations
as indicated. The dotted curve is calculated with a = 1.584
a~3 and b = (5/4) bFW at each energy. The dashed curve is
calculated with a = 1.58 4 a3 and with b equal to the value
determined empirically from the 21S/21 P ratios at 0° at
each energy.
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Fig. 13. Ratio of the differential cross section for
excitation of the 21 S state to that for exci-
tation of the 21p state as a function of inci-
dent energy at 8 = 60°:. The curve is calculated
in the symmetrized Born-Ochkur-Rudge approxima-
tion (BORB.I). The circles are the present
experimental results. The error limits are
the average deviation for 3-6 runs. No error
estimate has been made for the 81.6 eV point.
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The 0° ratios are predicted more accurately by the first Born approxi-

mation at very high energies than at lower ones. Boersch, Geiger, and

Schroder2 3 obtain a 21 S/2 P intensity ratio of (1.43 ± 0.27) x 10
- 4

at 25

keV and e = 00. This ratio is calculated to be 1.03 x 10
- 4

and 1.05 x 10- 4

using the Born approximation with the accurate
5
'8 6 and SCF (with the experi-

mental AE) oscillator strengths, respectively. The inclusion of polariza-

tion in the 2 S state slightly improves the agreement between experiment

and theory. With a = 1.584 a3 and b = (5/4)bFW and B/PB' approximation
0

yields a 21S/27P ratio of 1.10 x 10 
- 4

. Calculations using the other polari-

zation forms give results within a few percent of this value. The polariza-

tion potential is highly nonadiabatic at this energy (note the large b1 in

Table IV), and, hence, it contributes relatively little to the scattering

even at 0°.

The calculations including polarization are not in exact agreement

with experiment for the 00 ratio (see Fig. 10). If, however, with a fixed

a we let the cutoff parameter b in the polarized Born approximation for the

excitation of the 2 S state be an empirical quantity, we can adjust it at

each energy to make the calculated 2 1S/2P DCS ratio at 0° equal the ex-

perimentally measured one. The value of b determined in this manner depends

on the form chosen for the polarization potential curoff function (Eqs.

(23)-(26)). These results are shown in Fig. 14 which compares these empiri-

FW
cally determined cutoff parameters to the theoretically justified bl . The

agreement is very good. Thus, somewhat surprisingly, we can use the Fetter-

Watson criterion to obtain a good estimate of the cutoff parameter b.

Figures 11 and 12 show the polarized Born predictions for the DCS

ratio as a function of energy at 5° and 100 scattering angles, respectively.

The inclusion of polarization has little effect at high energy where the
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Fig. 14. Cutoff parameter (b) vs. impact emergy.- The solid liie ishb'=

1b- = ko/0.90372. The shaded area encloses the range of b values
determined empirically from the 21S/2Lp cross sectidn ratios at
0°. The empirically determined b values for the A, B, B', and C
forms of the polarization potentials are scaled by'multiplying
them by 4/-, 3/4, 4/5, and 1, respectively. The lowest value at
each energy corresponds to the C form of the polarizati6n'p6ten-
tial and the highest to the A form. The scaled b values for the
B, B', and C forms differ by only 1-2% at each'energy..

'
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first Born approximation is accurate, but at lower energies it improves

agreement with experiment significantly.

The effects of exchange and of distortion of the scattering electron

wave function are small at small scattering angles. However, these effects

are presumably large at 600. Also, the short-range form of the polarization

potential (i.e., the choice of polarization cutoff function in the present

calculations) is much more important at 0 = 60° than it is at small scatter-

ing angles. For these reasons the present calculations do not predict the

cross sections accurately at scattering angles as large as 600 (see Fig. 13)

2. Angle Dependence

The Ochkur and the symmetrized Born-Ochkur-Rudge methods predict dif-

ferential cross sections which have a zero except very close to threshold.

(The angle at which this zero occurs depends on the particular energy-loss

and incident energy and approaches 90° in the limit of high impact energy.)

Since the zeros in the 21 S and 25P differential cross sections do not quite

coincide, these approximations yield cross section ratios with an infinite

singularity. The cross section ratios predicted by the Born, unsymmetrized

Born-Ochkur-Rudge, and the Born-transferred-Kang-Foland methods do not have

this singularity since these methods yield DCS's which are monotonically de-

creasing functions of 8. Table IX compares the 2 S/2iP differential cross

section ratios given by these latter four methods at several angles and

energies. The low-angle, high-energy ratios predicted by the methods which

predict a singularity in the ratios also agree with those presented in Table

IX since the zero in the differential cross section near 90° at high energy

has little effect on the low-angle ratios.

The present calculations are shown to be in excellent agreement with

the high energy ratio data of Silverman and LassettrelO at 500 eV (see Fig.
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21 S/21 P differential cross section ratios calculated in the

Born (B), Born-Ochkur-Rudge prior (BOR), Born-Ochkur-Rudge post (BORP),

and Born-transferred Kang-Foland (BTKF) approximations.

Scattering
angle
(deg)

0
30
60
90
120

150
180

0
30
60
90

120
150
180

Method

B

0.276
0.349
0.543
0.834
1.16
1.41
1.51

0.170
0.289
0.620
1.18
1.81
2.27
2.44

0.0557
0.397
1.66
3.70
6.07
8.23
9.12

0.00898
2.83

17.5
52.2
92.8

124
135

BOR

E = 25 eV
0.267
0.338
0.528
o.819
1.15
1.41
1.51

E = 30 eV
0.168
0.285
o.609
1.16
1.78
2.24
2.41

E
0.0557
0.396
1.65
3.66
5.99
8.13
9.02

E
o.oo898
2.83

17.5
52.1
92.4
123
135

BORP

0.289
0.365
0.573
0.902
1.30
1.63
1.75

0.173
0.297
0.650
1.29
2.08
2.66
2.86

= 60 eV
0.0558
0.400
1.72
4.21
6..98
9.03
9.87

= 300 eV
o0.00oo898
2.84
17.7
61.4
96.6

126
137

0.275
0.346
0.535
0.810
1.13
1.40
1.50

0.169
0 .288
0.617
1.16
1.77
2.24
2.42

0.0556
0.397
1.66
3.71
6.04
8.og9
8.96

o0.00oo898
2.84

17.5
52.7
94.7

126
137
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0
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Fig. 15. 21 S/21 p intensity ratios vs. scattering angle. The squares
(417 and 604 eV) and triangles (511 eV) are the results of
Lassettre et al. (Ref. 9), and the circles (500 eV) are the
results of Silverman and Lassettre (Ref. 10). The dashed
curve is calculated in the B/PC approximation with a = 1.584
a3 and b = bFW = 6.13 ao . The solid curves are calculated in
the post Born-Ochkur-Rudge approximation (BORP). The results
of the BORP and the first Born approximation are indistin-
guishable in the energy and angle range of this figure.
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15), with that of Lassettre, Krasnow, and Silverman9 at 511 eV and 417 eV

(see Fig. 15), and with the experimental results of Vriens, Simpson, and

Mielczarek2 at 400 eV (see Fig. 16) and 300 eV (see Fig. 17). Apparently,

theory and experiment9 differ at 604 eV. The lack of high energy experi-

mental data for 8 > 150 precludes a more rigorous test of these first-order

methods for large-angle, high-energy scattering. At high energies, polari-

zation is significant only at relatively small scattering angles. The data

presently available do not cover the low-angle region well enough to allow

a definitive test of the importance of polarization at these energies.

As the impact energy is lowered to 225 eV and below, the ratios calcu-

lated either with or without polarization increase more rapidly with in-

creasing angle than do the experimental ones (see Fig. 17). However, even

at impact energies as low as 81.6 eV (see Fig. 3), the calculated ratios

are within about a factor of 5 of the experimental ones to angles as large

as 80° and exhibit a variation with angle which is qualitatively correct.

At energies below 81.6 eV, the ratios calculated without polarization differ

markedly in both magnitude and shape from the experimental ones (see Figs.

1 and 2). However, the inclusion of polarization in the calculation signi-

ficantly improves the agreement between theory and experiment at small

angles (see Figs. 1, 16, and 18).

Figures 18 and 19 show the effect on the calculated intensity ratios

of varying the polarization potential. As the value of a is increased, the

ratio curves become steeper functions of scattering angle for angles greater

than about 300, and a minimum develops at lower angles. These changes di-

rectly reflect the changes in the 2 S DCS, since the 21P DCS used to con-

struct all these ratios is the same. The important effect of polarization

on the angle dependence of the 2 S DCS is discussed in the next section.

71



102z _ /4JuUev102 I _eV

BTKF

00eVI0 ~ _ ....... ......60 l.

0 )

H 00 48 eV
c)
z

LH48eV Oa.8eV
z

28circles are the experimental results of Vriens

curves are caloculated in the BTKF approximation
at the indicated energy. The dotted curve is
calculated in the B/PB' approximation with a =

1.584 a3 and b empirically determined to be
2.08 a0. A curve for the Born approximation
at .00 eV would be indistinguishable from the
BTKF curve on the scale of this figure.
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Fig. 17. 21 S/21p intensity ratios as a function of scat-
tering angle at the indicated energies. The
circles are the experimental results of Vriens
et al. (Ref. 2). The solid curves are calcu-
lated in the Born-transferred Kang-Foland ap-
proximation (BTKF). The dashed and dotted
curves are calculated in the polarized Born
approximation (B/PB') with a = 1.584 a3. b =
(5/4) b W = 4.59 ao for the dashed curve, b =
2(5/4) b W = 9.18 ao for the dotted curve at
150 eV; b = (5/4) bF = 5.30 ao for the dotted
curve at 200 eV, and1b = (5/4) bl = 6.50 ao for
the dotted curve at 300 eV.
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Fig. 18. 21 S/21 p intensity ratios at E = 55.5 eV. The

21S differential cross section is calculated
in the B/PB' approximation, and the 21P differ-
ential cross section is calculated in the Born
approximation. SCF wave functions are used in
both calculations. The curves are labeled with
the value of a used in the 21S cross section
calculations. The cutoff parameter in the po-
larization potential is b = (5/4) bW = 2.79 a

o

for those curves marked with an asterisk and
was determined empirically from the 21S/21p
cross section ratios at 0° for the others. The
triangles (with error bars, except when the
error is small) are the present data.
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Fig. 19. 21 S/21 P intensity ratios at E = 100 eV. The

21 S differential cross sections are calculated
in the polarized Born approximation using the
indicated form of the polarization potential
(and value of a). The 21 P cross sections are
calculated in the Born approximation. SCF wave
functions are used. The cutoff parameter in
the polarization potential for Phe curve marked
with an asterisk is 1.5 (5/4) b

I = 5.62 a
o
and

the other values are determined empirically
(see text and Fig. 13) to be 6.04 a for a
10.0 a, 5.17 a

o
for a = 5.0 ao, 3.46 ao for

a = 1.584 a3 and form C, and 3.02 ao for a =
1.584 a3 an. form A. The circles are the data
of Ref. 2.
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B. Differential Cross Sections - Angle Dependence

The experimental and calculated DCS's for the 0° -90° angular range are

shown in Figs. 4-8 for several energies below 100 eV (26.5, 34, 44, 55.5,

and 81.6) and in Fig. 20 for the 0°-20 ° range at several higher energies

(100, 150, 175, 200, 225, 300, and 400 eV). Although the Ochkur and the

symmetrized Born-Ochkur-Rudge DCS's have zeroes at some scattering angles,

the different first-order calculations predict approximately the same angu-

lar behavior, which can be simply characterized in most of the cases as

monotonically decreasing as the scattering angle increases and becoming

steeper as the impact energy increases. The agreement between the theoreti-

cal and the available experimental results becomes much better at impact

energies of 81.6 eV and above.

The best agreement between the experimental and theoretical angular

dependence is obtained for the B/PB' calculations as shown on Figs. 5, 6,

and 7 by the dotted curves. These curves are easily seen to be much steeper

than the Born (B) curves due to the inclusion of polarization. Unfortunately,

at the smaller angles the magnitudes of the B/PB' curves exhibit the poorest

agreement with experiment. (For ease of comparison of their angular depen-

dence with experiment, they were renormalized to the experimental DCS's at

10° by multiplying the calculated values by a factor of 0.281, 0.230, and

0.193 for the energies of 34, 44, and 55.5 eV, respectively.)

The plane wave theories used here overestimate the magnitude of the

differential cross section as they did for excitation of the 2 P state.7

However, in that case we found that the Born approximation and the Ochkur-

like approximations gave approximately the correct angle dependence of the

DCS for momentum-transfers less than about 1.6 a.u. This corresponds to

about 400 in the intermediate energy range. Figures 4-7, however, show
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Fig. 20. 21S differential cross sections. The solid curves are the
DCS calculated in the post Born-Ochkur-Rudge approximation
(BORP) and the symbols represent the data of Ref. 2. The
impact energies in eV are indicated next to the curves
and symbols. The dotted curves are calculated in the
polarized Born approximation (B/PB') with a = 1.584 ao3 and
b = (5/4) bjV at each energy.
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that the Born approximation and the Ochkur-like approximations (neglecting

polarization) do not predict the correct angular dependence for excitation

of the 21S state even at angles considerably less than 40°. The inclusion

of dipole-polarization, making the adiabatic approximation in the initial

state, brings theory and experiment into better qualitative agreement for

the angle dependence. In Appendix III we discuss the angle range over which

plane wave theories agree with experiment for elastic scattering by He, Hg,

and H2, as well as the 2 P and 21 S excitations.

Because of the possibility of determining transition polarizabilities

empirically from experiment, it is important to examine the effect of the

choice of polarization potential on the DCS's. This is explicitly shown in

Figs. 21-24 for E = 34, 44, 55.5, and 81.6 eV, respectively. The calcula-

tions shown in these figures were carried out in the BOR/P and B/P approxi-

mations with different types of cutoff functions and with different values

of a and b. At low impact energies (e.g., 34 eV) we can draw the following

general conclusions: In the BOR/PA calculations the angle dependence of

the DCS's is not very sensitive to changes in either a or b. In the BOR/PC

calculations, as the value of a is increased the DCS curves become steeper

at low angles, and a minimum and a maximum develop in the curve at interme-

diate angles. These minima and maxima shift to lower angles as a is in-

creased. The behavior of the DCS's calculated in the BOR/PB and BOR/PB'

approximations is intermediate between those of the BOR/PA and BOR/PC ap-

proximations. Attempts at determining the transition polarizability from

the present data indicate that it cannot be determined with any accuracy.

The best agreement with experiment at 34 eV is obtained with polariza-

tion form C and with a c 7 a . This value of a is considerably larger than

the theoretically justified value of 1.584 a3 . However, the value of a
0
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Fig. 21. 21 S differential cross sections at E = 34 eV calculated in
the polarized Born-Ochkur-Rudge approximation (BQR/P) with
form A and form C polarization potentials. The numbers 1,
2, and 3 after the designations refer to a = 1.584 ao3, a =
3.0 ao3, and a = 7.0 a03, respectively. The cutoff parameter
used in thepolarization potential is bl for the BOR/PC-1*
and (-n/4) b1 . for the BOR/PA-1* curves, and is determined
empirically (see text) for the others. The circles with
error bars represent the present data.
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Fig. 22. 21S differential cross sections at E = 44 eV with a = 1.0 ao3.

The curves are calculated in the indicated approximation.
The empirically determined cutoff parameter b is used in each

calculation which includes polarization. The circles with

error bars are the present experimental results at this
energy.
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Fig. 24. 21 S differential cross sections at 81.6 eV calculated in the

polarized Born-Ochkur-Rudge approximation (BOR/P) with form
A and form C polarization potentials. The numbers 1 and 3
after the symbols refer to a = 1.58 4 a3 and a = 7.0 a3 res-
pectively. The cutoff parameter used in the polarization
potential is determined from the experimental 21S/21 P inten-
sity ratios at 0 = 0 (see text). The BOR/PA-3 curve is
shown only up to = 400 because at higher angles it cannot
be distinguished from the BOR/PA-1 curve on the scale of this
figure. Curves for BOR/PA and BOR/PC with a = 3.0 ao3 are
not shown since they are intermediate between the two cases
shown. The circles are the present data.



required for the best agreement with experiment decreases with increasing

energy in contrast to the expected energy independence of this quantity

(see Section III.D). These observations appear to indicate that the polari-

zation potential should go to zero at small r faster than form B' does.

At higher impact energies (81.6 eV) all the calculated curves fall into

a relatively narrow band, and they predict the magnitude of the DCS's in

agreement with experiment out to about 70° . The calculations are not ex-

pected to be reliable at large scattering angles because of uncertainties

in the proper short range form of the polarization potential. At energies

near 100 eV and higher the influence of a and b is significant only at

small scattering angles, where the lack of experimental data precludes a

definitive test of these calculations.



V. COMPARISON OF TIHEORETICAL AND EX-

PERIMENTAL INTEGRAL CROSS SECTIONS

The integration of our experimental 2 S differential cross sections to

obtain 2 S integral cross sections is discussed in Section II, and the re-

sults (circles with error bars) are plotted in Fig. 25. The high energy

(200, 225, 300, and 400 eV) experimental integral cross sections obtained

by Vriens, Simpson, and Mielczarek2 are shown in this figure (triangles).

The cross sections at 100, 150, and 175 eV (diamonds) were obtained by inte-

grating the 2 S differential cross section fits given by these authors.

These latter results are subject to some uncertainty since only a small

range of angles (0 • 200) was studied. We obtained the remaining experi-

mental cross sections in Fig. 25 (squares) by an analysis of the excitation

function measurements of Dugan, Richards, and Muschlitz as discussed

below.

Dugan, Richards, and Muschlitz
2
6 measured the relative electron-impact

excitation function R(E) for production of the 2 1S state for 26 • E • 136

eV. Their excitation function includes contributions from radiative decay

to the 2 S state by higher states (cascade) excited by electron impact,

i.e.,

Q(E) X R(E) - QA(n i - 2 S) (65)QnA- fl2- 2 S) (65)
n=2

where the last term is the cascade correction, X is independent of E and

normalizes their relative data to the absolute scale, Qn(E) is the integral

cross section for excitation of the n1P state, A is the branching fraction

for nP -~ 21 S radiative decay, and Q(E) is the 2 1S integral cross section.

The branching fractions for n = 2-8 are calculated from the table given by
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Fig. 25. 11S - 21S integral cross sections as a function of impact
energy. The squares are the experimental results of Dugan
et al. (Ref. 26) (corrected for cascade, see text); the
triangles and diamonds are those of Vriens et al. (see text)
(Ref. 2); and the circles (with error bars) are the present
experimental results (see text). The curve labeled SML is
obtained by scaling the 31S excitation function data of
St. John, Miller, and Lin (Ref. 97) (see text). The other
curves are calculated using the indicated approximations.
The curves labeled 0 and OP are calculated using the Born
direct amplitude and the Ochkur approximation in the prior
and post formulations, respectively, for the exchange ampli-
tude. For the polarized Born approximation (B/PB'), a =
1.584 a3 and b = (5/4) bjW at each energy. The low energy
rise in the B/PB' cross section (not shown) is steeper
than that of the Born-Ochkur-Rudge approximation (BOR).
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Gabriel and Heddle.96 Since the 31 P state is the largest contributor to

the cascade correction, we assume that

Qn(E) = ()3 Q3 (E) n = 2,4,5... (66)

We then obtain

Q(E) - X R(E) - 0.0527 Q
3
(E) . (67)

We use the absolute values of Q3 (E) of St. John, Miller, and Lin.9 7 The

value of X in Eq. (67) is determined by requiring that Q (136 eV) = 0.030

a
o
, which is chosen to be in reasonable agreement with the lower energy

data of Vriens, Simpson, Mielczarek.
2

The resulting cross section values

Q(E) are plotted (squares) in Fig. 25.

The curve in Fig. 25 labeled SML is obtained by assuming that the shape

of the 21S integral cross section curve is the same as the 3 1S one measured

by St. John, Miller, and Lin9 7 as a function of the incident energy in

threshold units (E/AE(1'S - n S)). The ordinate for this curve is deter-

mined by normalizing it to the E = 300 eV integral cross section data of

Vriens, Simpson, and Mielczarek.2

The different measurements for the 2 1S integral cross section shown in

Fig. 25 are in good accord with each other with the possible exception of

the result deduced from the SML data below about 50 eV.

The other curves in Fig. 25 represent the various theoretical models

discussed in Section III, both with and without polarization as indicated.

The total cross sections calculated with the BOR and B/PB' (C = 1.584 a3 )

models reach maxima of about 0.21 and 0.37 aO, respectively, within an eV

of 26 eV. Figure 26 presents some additional integral cross sections cal-

culated using several forms of the polarization potential. This figure
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shows the sensitivity of the magnitudes of the B/P cross sections to the

form of the short range part of the polarization potential.

The cross sections predicted by the first-order theories apparently

agree well with experiment for energies greater than about 400 eV but are

too large at lower energies. This behavior has been observed by several

other investigators. Lassettre9 8 used the Born approximation and a gener-

alized oscillator strength fitting procedure to obtain the 21S integral

cross section at all energies based on experimental generalized oscillator

strengths measured only at high energies. His cross section curve lies

very close to the BTKF curve in Fig. 25 and somewhat below the Born approxi-

mation results based on the accurate generalized oscillator strengths of

Kim and Inokuti.5 Schneider8 7 used a generalized oscillator strength calcu-

lated using linear response theory to calculate an integral cross section

at 500 eV. His value is just slightly (10%) larger than that given by the

pure Born result using the SCF wave functions. As in the case of the 21P

excitation,7 the VPS, OP, O, and BORB.I approximations give considerable

improvement over the Born approximation in the shape of the cross section

and the VPS and OP are only about 50% larger than the maximum in the experi-

mental cross section. Over the whole energy range, the VPS and OP approxi-

mations to the integral cross section give the best agreement with experi-

ment. This fact could be useful in empirical work. As a general rule, the

inclusion of polarization in a given first-order theory results in an even

larger integral cross section.

Figure 27 compares the near-threshold behavior of the 2 S integral

cross sections predicted by the present first-order methods and by close-

coupling calculations with the lowest energy experimental data from Fig. 25.

The-triangles are the results of a three-state (1 S, 215, 23S) close-coupling
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Fig. 27. 11S - 21 S integral cross sections as a function of impact

energy near threshold. The square and circle (with error
bar) are the experimental results of Dugan et al. (Ref. 26)
and the present work, respectively. The triangles are the
theoretical results obtained by Marriott (Ref. 99). The
curve labeled BCO is the theoretical result of Burke et al.
(Ref. 41). The other curves are the present theoretical
results, calculated using the indicated approximations.
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calculation performed by Marriott.9 9 Since he used a threshold of 20.58

eV, his energy scale was multiplied by 20.61/20.58 before plotting the cross

sections. The five-state (1 5, 21S, 23S, 23P, 2i), close-coupling calcu-

lation by Burke, Cooper, and Ormonde4 1 is labeled as BCO in the figure.

The experimental data points are significantly smaller than all the calcu-

lated cross sections, including the Marriott close-coupling results. The

five-state close-coupling calculations have not yet been reported over a

large enough energy range, nor have experimental data been reported at low

enough energies, to permit a more definitive comparison. The first-order

theories are of course not expected to be reliable in the energy range of

Fig. 27. The differences between the curves labeled BORB.I and BORB.I(SCF)

are due entirely to differences in the bound-state wave functions used in

the two calculations.

A
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VI. SUMMARY AND DISCUSSION

Experimental and quantum mechanical results are presented for the inte-

gral and differential cross sections (DCS's) for excitation of the 2 S state

and for the ratio of DCS's for excitation of the 21 S and 21P states in the

impact energy range 26.5-81.6 eV. To explain the angle dependence of the

small-scattering-angle (e < 40° ) DCS for E = 34-81.6 eV for either transi-

tion it is unnecessary to include an accurate treatment of the distortion

of the scattering-electron wave function or of exchange of the incident

electron with the bound electrons. This property of the scattering is

accurately predicted using plane-wave scattering functions and an effective

potential (optical potential) to represent the interaction of the scatter-

ing electron with the target. For the 21i excitation, the potential may be

determined in the static approximation (unperturbed initial and final state),

but for the 2 S excitation it is necessary to include the induced dipole in

the description of the target. Although the adiabatic polarization model

was previously shown to be an adequate way to include the effect of the in-

duced dipole on elastic scattering at impact energies at least up to a few

hundred eV, this model is not adequate for the 1 S - 2 S transition. Evi-

dently, nonadiabatic effects are more important for inelastic scattering

than for elastic scattering. We use Fetter and Watson's theoretical crite-

rion for the applicability of the adiabatic approximation to evaluate a

cutoff parameter for including some nonadiabatic effects in the polarization

model. This procedure gives results in better agreement with experiment

than those obtained by including only the static interaction.

The present calculations agree better with higher energy (E 2 100 eV)

experimental DCS's than do previous theoretical treatments (the first Born

approximation).
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The calculated magnitudes of the differential cross sections are in

poor agreement with experiment at intermediate energies. The agreement is

worse in the present case than in the case of the 2 i excitation.7

The usefulness of self-consistent-field (SCF) single-configuration

wave functions for describing the target is examined. We find, on compar-

ing the results to those from more accurate calculations, that SCF wave

functions reproduce many facets of the more accurate calculations with

good accuracy.

The results of this study indicate that the procedures applied to

helium in this paper should also be useful for more complicated atoms and

diatomic molecules. The criteria developed here for the importance of

polarization can be used to discuss in a consistent way the DCS's for elas-

tic scattering of electrons by He and H2 and for excitation of the 21 S and

2P states of He.1 06

Finally, we examine, using our experimental results, the reliability

and correct interpretation of experiments carried out before 1940. It is

found that in some cases that data is still useful.
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APPENDIX I: SMALL MOMETUM-TRANSFER FORMS

OF THE POLARIZATION AMPLITUDES

If the polarization amplitudes (Eqs. (33)-(36)) are expanded in a power

series in the momentum-transfer q and if second and higher order terms are

ignored, the following expressions for the amplitudes are obtained.

-P(A) 1 -12
ST (i B)

P(B) 3b (1- 3)

fP(B') 5 aI _ (1_f

q-o

P(C) T T(1 B)

q-o

where

B= qb.
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APPENDIX II. COMPARISON OF THEORY AND RECENT EX-

PERIMENTS WITH OLDER EXPERIMENTAL WORK

Investigations of the angular dependence of inelastic scattering by

helium carried out prior to 1940100 suffer primarily from a lack of adequate

energy resolution. The most intense inelastic feature in the energy-loss

spectrum was usually observed to peak at an energy-loss of about 21.1 eV

and was attributed to excitation of the 21 P state. It is evident from the

results of more recent investigations3 7 that this peak contained significant

contributions from excitation of the other n = 2 states (i.e., 23S, 21S,

and 23 P states), particularly at larger scattering angles and lower impact

energies. In some cases, these older differential cross section data are

also affected by double scattering and improper effective path length cor-

rections. In general, these early investigators collected data over a wide

range of angles. These data cannot be readily reproduced with good resolu-

tion. It is of interest to re-examine these data in the light of more re-

cent results.

As an example, we will consider the data of Nicholl and Mohr a since

they were careful to operate under conditions for which double scattering

did not occur. Their basic experimental measurement is the peak (21.1 eV

energy-loss) scattered electron intensity as a function of $. This inten-

sity is multiplied by sin 0 to obtain a differential cross section in arbi-

trary units. The energy resolution in their experiment appears to be about

1.5 eV (see Fig. 3 of Ref. 1OOb). Since their observed 21.1 eV energy-loss
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feature contained contributions from all of the n = 2 excitation cross sec-

tions and since these cross sections have quite different angular dependen-

cies, it is to be expected that the shape of this feature varied with changes

in the scattering angle. With a knowledge of the n = 2 cross section ratios3 7

and the assumption of a Gaussian energy distribution (full-width at half-

maximum equal to 1.5 eV) for the incident beam, we can estimate the ratio

of peak height to peak area which was obtained in the experiments of Nicholl

and Mohr. At 3 4 eV, this ratio changes by only about 6% for scattering

angles between 100 and 70° .

The data of Nicholl and Mohr at 40 eV are shown in Fig. 28 (triangles).

These data are compared with the sum of all n = 2 differential cross sections

at 40 eV (circles) obtained by interpolation of the cross section ratios of

Ref. 37 and the 21P differential cross sections of Ref. 7. In addition,

theoretical calculations of the various n = 2 cross sections are included

in the figure.

The two sets of experimental data in Fig. 28 are in good agreement.

Similar comparisons at other energies (e.g., the data of Hughes and

McMillan with those of Vriens et al. ) also show good agreement. Appar-

ently these early measurements provide reasonably good estimates of the

angular dependence of the sum of all n = 2 differential excitation cross

sections over a wide range of scattering angles and incident energies.
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Fig. 28. Differential cross sections vs. scattering angle at E = 40 eV.
The triangles represent the data of Ref. lOOa and the circles
(with error bars) represent the sum of all n = 2 excitation cross
sections as derived in Appendix II. The former data are normalized
to the latter at 0 = 30°. The curves are the results of theoreti-
cal calculations for transitions from the 1 S s ate to the indica-
ted final states. The curves labeled 23S and 2JP are calculated
in the Ochkur-Rudge approximation and are taken from Ref. 101.
The curve labeled 21P is calculated in the Born approximation and
is taken from Ref. 7. The curves labeled 21S are the present re-
sults calculated using the Born (B) and polarized Born (B/PB')
approximations and SCF wave functions. For the latter, a = 1.584
a3 and b = (5/4) bFW = 2.37 a

o
. The results of the B/PB' approxi-

mation are not shown for 8> 50°. The caure labeled SUM is the
sum of the calculated 23 S, 23 P, 21 S, and 2 P cross sections in
which polarization in the 21 S calculation is included for angles <
500 and ignored for larger angles.
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APPENDIX III: THE ANGLE RANGE OVER WHICH PLANE

WAVE THEORIES AGREE WITH EXPERIMENT

Both Rice et al.3
8 -

3 9 and Miller, Mielczarek, and Krauss1 0

2
have at-

tempted to use the experimentally measured angle dependence of the DCS as

an indicator of the state symmetries involved in a transition which produces

a particular energy-loss peak.

The method used by Rice and co-workers is empirically based on the com-

parison of measured DCS ratios as a function of angle for various types of

transitions. 3 However, Miller et al. attempt to match the angle depen-

dence of the experimental DCS to that of a Born approximation calculation.

They argue that a dip in the experimental DCS means the transition is of

the type for which the Born approximation DCS has a dip. If such reasoning

is to be used confidently, we must be reasonably certain that the Born ap-

proximation predicts the correct angle dependence of the DCS in certain

situations. Further, in order to decide whether plane wave calculations

for different types of transitions can be useful in guiding the method of

Rice et al., we must determine the range of angles for which plane wave cal-

culations predict the correct angle dependence of the DCS.

Table X summarizes some of the presently available data on the range

over which the Born and polarized Born approximations predict the approxi-

mately correct angle dependence of the differential cross sections. Col-

umns 1, 2, and 3 list the target, transition, and impact energy, respectively.

Column 4 contains the maximum angle Gmax for which plane wave theory andmax



experiment have approximately the same shape. This angle is determined by

normalizing theory to experiment at 8 = 20° and finding the angle at which

they deviate by 50%. Columns 5, 6, and 7 contain, respectively, the

momentum-transfer q(max), the experimental DCS IeP( max), and the calcu-

lated DCS I alc (max) evaluated at 0 = 0max max

The plane wave cross sections agree qualitatively with experiment at

small e, where many partial waves contribute appreciably to the DCS. At

large 0 the scattering is due mainly to the lowest few partial waves, where

distortion of the plane wave may be appreciable. To obtain a rough estimate

of the contribution to scattering involving large distortion, we present in

Column 8 one-half the maximum theoretical cross section for s-wave scatter-

ing I . The s-wave limit for the DCS is l/k for elastic scattering and

1/4k2 for inelastic scattering. 0 4 Finally, Columns 9 and 10 list, respec-

tively, the experimental and calculated DCS's divided by IS/2.

In a previous paper7 we noted that for excitation of the 21P state,

the angle dependence of the DCS was predicted out to q x 1.6 a.u. The more

extensive collection of data presented in Table X shows that for elastic

scattering the plane-wave theories often predict the angle dependence cor-

rectly out to even larger q. The data also indicate a systematic trend in

which the angle dependence of the DCS is correctly predicted out to larger

q at higher energies than at lower ones. Further, the magnitudes of the

experimental and theoretical DCS's agree better at higher energy. In dis-

cussing scattering from a central potential of finite range, Schiff1 0 5 sug-

gests that the Born approximation can be used at all angles provided the

incident energy is high enough while at lower energies the small-angle

scattering may be given correctly when the large-angle scattering is not.

Such a trend is consistent with the present results.
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The entries in Column 9 of Table X are near unity for the elastic scat-

tering data and possibly the 1 S - 2'P DCS's. Thus, s-wave scattering may

account for the values of emax obtained in these cases. However, the angle

dependence of the 1 S - 2 S DCS's is predicted to angles at which the cross

section is considerably lower than our estimate of the maximum probable s-

1 s
wave contribution. Possibly our use of ½I for this estimate is not as

realistic in this case. In general, Column 9 provides a less energy-

dependent criterion for the validity of the plane wave theories than do

either Columns 4 or 5.

Table X shows that plane wave theories are more successful for elastic

scattering than for inelastic scattering. This success is probably due to

the larger contributions to the cross sections from higher partial waves in

the elastic case. For the two inelastic transitions in the table, the Born

approximation is less valid for the 2 S excitation than for the 2P one.

This is probably due to the much greater difficulties in estimating the ef-

fective potential for the 2 S case. This points up the importance of fur-

ther study of the nonadiabatic polarization transition potential.
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